Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
IUBMB Life ; 74(1): 24-28, 2022 01.
Article in English | MEDLINE | ID: covidwho-1296787

ABSTRACT

Research on oxidants and electrophiles has shifted from focusing on damage to biomolecules to the more fine-grained physiological arena. Redox transitions as excursions from a steady-state redox set point are continually ongoing in maintenance of redox balance. Current excitement on these topics results from the fact that recent research provided mechanistic insight, which gives rise to more concrete and differentiated questions. This Commentary focuses on redox eustress and the feedback restoration of steady state as concepts in active maintenance of physiological health, with brief discussion of redox stress response to viral infection, exemplified by COVID-19.


Subject(s)
COVID-19/metabolism , Homeostasis , Oxidation-Reduction , SARS-CoV-2 , COVID-19/immunology , Feedback, Physiological , Hormesis , Host Microbial Interactions/immunology , Host Microbial Interactions/physiology , Humans , Immunity, Innate , Models, Biological , NF-E2-Related Factor 2/metabolism , Oxidative Stress , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity
2.
J Biol Chem ; 295(39): 13458-13473, 2020 09 25.
Article in English | MEDLINE | ID: covidwho-1023994

ABSTRACT

My interest in biological chemistry proceeded from enzymology in vitro to the study of physiological chemistry in vivo Investigating biological redox reactions, I identified hydrogen peroxide (H2O2) as a normal constituent of aerobic life in eukaryotic cells. This finding led to developments that recognized the essential role of H2O2 in metabolic redox control. Further research included studies on GSH, toxicological aspects (the concept of "redox cycling"), biochemical pharmacology (ebselen), nutritional biochemistry and micronutrients (selenium, carotenoids, flavonoids), and the concept of "oxidative stress." Today, we recognize that oxidative stress is two-sided. It has its positive side in physiology and health in redox signaling, "oxidative eustress," whereas at higher intensity, there is damage to biomolecules with potentially deleterious outcome in pathophysiology and disease, "oxidative distress." Reflecting on these developments, it is gratifying to witness the enormous progress in redox biology brought about by the science community in recent years.


Subject(s)
Hydrogen Peroxide/metabolism , Glutathione/metabolism , Humans , Oxidation-Reduction , Oxidative Stress
SELECTION OF CITATIONS
SEARCH DETAIL